Technical Information
Orbital Motors
OML and OMM
Technical Information

OML and OMM Orbital Motors

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Changed</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2014</td>
<td>Converted to Danfoss layout - DITA CMS</td>
<td>BA</td>
</tr>
<tr>
<td>Nov 2012</td>
<td>Planetary Gears deleted</td>
<td>AI</td>
</tr>
<tr>
<td>Oct 2011</td>
<td>Dimensions added to drawing</td>
<td>AH</td>
</tr>
<tr>
<td>May 2011</td>
<td>Typos</td>
<td>AG</td>
</tr>
<tr>
<td>Sep 2010</td>
<td>New back page</td>
<td>AF</td>
</tr>
<tr>
<td>Mar 2010</td>
<td>Japan location</td>
<td>AE</td>
</tr>
<tr>
<td>Jul 2008</td>
<td>Text</td>
<td>AC</td>
</tr>
<tr>
<td>Apr 2008</td>
<td>Pictures, drawings and text</td>
<td>AB</td>
</tr>
</tbody>
</table>

Table of Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Changed</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2014</td>
<td>Converted to Danfoss layout - DITA CMS</td>
<td>BA</td>
</tr>
<tr>
<td>Nov 2012</td>
<td>Planetary Gears deleted</td>
<td>AI</td>
</tr>
<tr>
<td>Oct 2011</td>
<td>Dimensions added to drawing</td>
<td>AH</td>
</tr>
<tr>
<td>May 2011</td>
<td>Typos</td>
<td>AG</td>
</tr>
<tr>
<td>Sep 2010</td>
<td>New back page</td>
<td>AF</td>
</tr>
<tr>
<td>Mar 2010</td>
<td>Japan location</td>
<td>AE</td>
</tr>
<tr>
<td>Jul 2008</td>
<td>Text</td>
<td>AC</td>
</tr>
<tr>
<td>Apr 2008</td>
<td>Pictures, drawings and text</td>
<td>AB</td>
</tr>
</tbody>
</table>
Contents

Shaft load
Permissible shaft loads for OMM... 28

Function diagrams
Function diagrams.. 29
OMM 8 function diagram.. 29
OMM 12.5 function diagram.. 29
OMM 20 function diagram... 30
OMM 32 function diagram... 30
OMM 50 function diagram... 31

Shaft
Shaft version.. 32

Port
Port thread versions.. 33

Dimensions, OMM end port, European version
OMM end port, European version... 34
Weight and dimensions.. 35

Dimensions, OMM end port, US version
OMM end port, US version.. 36
Weight and dimensions.. 37

Dimensions, OMM side port, European version
OMM side port, European version... 38
Weight and dimensions.. 39

Dimensions, OMM side port, US version
OMM side port, US version.. 40
Weight and dimensions.. 41

Accessories
2 bolt flange kit, code no. 151G0211.. 42

Hydraulic systems
Installation of the Danfoss Orbital Motors.. 43
About the design.. 43
About the assembly.. 43
Starting up and running in the hydraulic system.. 43
Operation.. 43
Maintenance.. 44
Danfoss is a world leader within production of low speed orbital motors with high torque. We can offer more than 3000 different orbital motors, categorised in types, variants and sizes (incl. different shaft versions).

The motors vary in size (rated displacement) from 8 cm³ [0.50 in³] to 800 cm³ [48.9 in³] per revolution. Speeds range up to approx. 2500 min⁻¹ (rpm) for the smallest type and up to approx. 600 min⁻¹ (rpm) for the largest type.

Maximum operating torques vary from 13 N·m [115 lbf·in] to 2700 N·m [24.000 lbf·in] (peak) and maximum outputs are from 2.0 kW [2.7 hp] to 70 kW [95 hp].

Characteristic features of Danfoss Orbital Motors

- Smooth running over the entire speed range
- Constant operating torque over a wide speed range
- High starting torque
- High return pressure without the use of drain line (High pressure shaft seal)
- High efficiency
- Long life under extreme operating conditions
- Robust and compact design
- High radial and axial bearing capacity
- For applications in both open and closed loop hydraulic systems
- Suitable for a wide variety of hydraulics fluids

Technical features of Danfoss Orbital Motor

The programme is characterised by technical features appealing to a large number of applications and a part of the programme is characterised by motors that can be adapted to a given application. Adoptions comprise the following variants among others:
A wide range of Orbital Motors

- Motors with corrosion resistant parts
- Wheel motors with recessed mounting flange
- OMP, OMR- motors with needle bearing
- OMR motor in low leakage version
- OMR motors in a super low leakage version
- Short motors without bearings
- Ultra short motors
- Motors with integrated positive holding brake
- Motors with integrated negative holding brake
- Motors with integrated flushing valve
- Motors with speed sensor
- Motors with tacho connection
- All motors are available with black finish paint

The Danfoss Orbital Motors are used in the following application areas:

- Construction equipment
- Agricultural equipment
- Material handling & Lifting equipment
- Forestry equipment
- Lawn and turf equipment
- Special purpose
- Machine tools and stationary equipment
- Marine equipment

Survey of literature with technical data on Danfoss Orbital Motors

Detailed data on all Danfoss Orbital Motors can be found in our motor catalogue, which is divided into more individual subcatalogues:

- General information on Danfoss Orbital Motors: function, use, selection of orbital motor, hydraulic systems, etc.
- Technical data on small motors: OML and OMM
- Technical data on medium sized motors: OMP, OMR, OMH
- Technical data on medium sized motors: DH and DS
- Technical data on medium sized motors: OMEW
- Technical data on medium sized motors: VMP
- Technical data on medium sized motors: VMR
- Technical data on large motors: OMS, OMT and OMV
- Technical data on large motors: TMT
- Technical data on large motors: TMV

A general survey brochure on Danfoss Orbital Motors gives a quick motor reference based on power, torque, speed and capabilities.
The following bar diagrams are useful for a quick selection of relevant motor size for the application. The final motor size can be determined by using the function diagram for each motor size.

- OML can be found under function diagrams.
- OMM can be found under function diagrams.

The function diagrams are based on actual tests on a representative number of motors from our production. The diagrams apply to a return pressure between 5 and 10 bar [75 and 150 psi] when using mineral-based hydraulic oil with a viscosity of 35 mm²/s [165 SUS] and a temperature of 50°C [120°F]. For further explanation concerning how to read and use the function diagrams, please consult the paragraph "Selection of motor size" in the technical information "General" DKMH.PK.100.G2.02 520L0232.
Versions

OML versions

<table>
<thead>
<tr>
<th>Mounting</th>
<th>Shaft</th>
<th>Port size</th>
<th>European version</th>
<th>US version</th>
<th>Side port version</th>
<th>End port version</th>
<th>Standard shaft seal</th>
<th>Drain connection</th>
<th>Check valve</th>
<th>Main type designation</th>
<th>Config. code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front, 4 × M5</td>
<td>Cyl. 16 mm</td>
<td>G 1/4</td>
<td>X</td>
<td>X</td>
<td>No</td>
<td>Yes</td>
<td>OML</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Front, 4 × 10-32 UNF</td>
<td>Cyl. 5/8 in</td>
<td>7/16 - 20 UNF</td>
<td>X</td>
<td>X</td>
<td>No</td>
<td>Yes</td>
<td>OML</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Features available (options):

- Painted

Code numbers

<table>
<thead>
<tr>
<th>Config. code</th>
<th>Code number - displacement (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2001</td>
</tr>
<tr>
<td>2</td>
<td>2021</td>
</tr>
</tbody>
</table>

Ordering

Add the four digit prefix “151G” to the four digit numbers from the chart for complete code number.

Example:

151G2001 for an OML 8 with front mounting (4 × M5), cyl. 16 mm shaft and port size G 1/4.

Orders will not be accepted without the four digit prefix.
Technical data for OML with 16 mm and 5/8 in cylindrical shaft

<table>
<thead>
<tr>
<th>Type</th>
<th>OML 8</th>
<th>OML 12.5</th>
<th>OML 20</th>
<th>OML 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric displacement</td>
<td>cm³</td>
<td>[in³]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>[0.49]</td>
<td>12.5</td>
<td>[0.77]</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>[1.22]</td>
<td>32.0</td>
<td>[1.96]</td>
</tr>
<tr>
<td>Max. speed</td>
<td>min⁻¹</td>
<td>[rpm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cont.</td>
<td></td>
<td>2000</td>
<td>1280</td>
</tr>
<tr>
<td></td>
<td>int.¹</td>
<td></td>
<td>2500</td>
<td>1600</td>
</tr>
<tr>
<td>Max. torque</td>
<td>Nm</td>
<td>[lb•in]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cont.</td>
<td></td>
<td>7</td>
<td>[60]</td>
</tr>
<tr>
<td></td>
<td>int.¹</td>
<td></td>
<td>13</td>
<td>[120]</td>
</tr>
<tr>
<td>Max. output</td>
<td>kW</td>
<td>[hp]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cont.</td>
<td></td>
<td>1.1</td>
<td>[1.5]</td>
</tr>
<tr>
<td></td>
<td>int.¹</td>
<td></td>
<td>2.0</td>
<td>[2.7]</td>
</tr>
<tr>
<td>Max. pressure drop</td>
<td>bar</td>
<td>[psi]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cont.</td>
<td></td>
<td>70</td>
<td>[1020]</td>
</tr>
<tr>
<td></td>
<td>int.¹</td>
<td></td>
<td>125</td>
<td>[1810]</td>
</tr>
<tr>
<td></td>
<td>peak²</td>
<td></td>
<td>140</td>
<td>[2030]</td>
</tr>
<tr>
<td>Max. oil flow</td>
<td>l/min</td>
<td>[US gal/min]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cont.</td>
<td></td>
<td>16</td>
<td>[4.2]</td>
</tr>
<tr>
<td></td>
<td>int.¹</td>
<td></td>
<td>20</td>
<td>[5.3]</td>
</tr>
<tr>
<td>Max. starting pressure with unloaded shaft</td>
<td>bar [psi]</td>
<td>4</td>
<td>[60]</td>
<td>4</td>
</tr>
<tr>
<td>Min. starting torque</td>
<td>at max. press. drop cont.</td>
<td>Nm [lb•in]</td>
<td>5</td>
<td>[45]</td>
</tr>
<tr>
<td></td>
<td>at max. press. drop int.¹</td>
<td>Nm [lb•in]</td>
<td>10</td>
<td>[90]</td>
</tr>
<tr>
<td>Min. speed³</td>
<td>min⁻¹</td>
<td>[rpm]</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

1) Intermittent operation: the permissible values may occur for max. 10% of every minute.
2) Peak load: the permissible values may occur for max. 1% of every minute.
3) Max. pressure drop in applications with a large moment of inertia and frequent stops or reversings.
4) Operation at lower speed may be slightly less smooth.
Shaft seal

Max. permissible shaft seal pressure

OML has incorporated check valves which ensure that the pressure on the shaft seal never exceeds the pressure in the return line.

Max. return pressure (max. pressure on shaft seal)

![Graph showing pressure drop in motor]

Pressure Drop in Motor

The curve applies to an unloaded motor shaft and an oil viscosity of 35 mm²/s [165 SUS]
Oil flow

Direction of shaft rotation
Permissible shaft loads for OML

The permissible radial shaft load ($P_{\text{rad.}}$) is calculated from the distance (l) between the point of load and the mounting surface:

$$P_{\text{rad.}} = \frac{84500}{64.5 + l} \text{ N (l in mm; } l \leq 80)$$

$$P_{\text{rad.}} = \frac{748}{254 + l} \text{ lbf (l in inch; } l \leq 3.15)$$

The drawing shows the permissible radial load when $l = 15 \text{ mm [0.59 in]}$.

The calculated shaft load should never exceed the permissible value.
Function diagrams

Explanation of function diagram use, basis and conditions can be found under *Speed, torque and output.*

- A: Continuous range
- B: Intermittent range (max. 10% operation every minute)

Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found under *Technical data.*

Intermittent pressure drop and oil flow must not occur simultaneously.

OML 8 function diagram
Function diagrams

OML 12.5 function diagram

OML 20 function diagram
Function diagrams

OML 32 function diagram
Shaft

Shaft version

A: Cylindrical shaft
16 mm

C: Parallel key
A5 × 5 × 16
DIN 6885

US version

B: Cylindrical shaft
5/8"

D: Parallel key
3/16 × 3/16 × 3/4 in
B.S. 46
Port thread versions

A: G main ports
C: ISO 228/1 - G1/4

B: UNF main ports
D: 7/16 - 20 UNF
O-ring boss port
Dimensions, OML end port, European version

OML end port, European version

C: M5; 15 mm [0.59 in] deep
D: G 1/4; 12 mm [0.47 in]

Weight and dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Length L max. [mm]</th>
<th>Length L1 [mm [in]]</th>
<th>Weight [kg [lb]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML 8</td>
<td>102.5 [4.04]</td>
<td>4.1 [0.16]</td>
<td>1.0 [2.2]</td>
</tr>
<tr>
<td>OML 12.5</td>
<td>104.8 [4.13]</td>
<td>6.4 [0.25]</td>
<td>1.0 [2.2]</td>
</tr>
</tbody>
</table>
Dimensions, OML end port, European version

<table>
<thead>
<tr>
<th>Type</th>
<th>Length $L_{\text{max.}}$ [mm]</th>
<th>Length L_1 [mm [in]]</th>
<th>Weight [kg [lb]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML 20</td>
<td>108.6 [4.28]</td>
<td>10.2 [0.40]</td>
<td>1.1 [2.4]</td>
</tr>
<tr>
<td>OML 32</td>
<td>114.7 [4.53]</td>
<td>16.3 [0.64]</td>
<td>1.2 [2.6]</td>
</tr>
</tbody>
</table>
Dimensions, OML end port, US version

OML end port, US version

C: 10 - 32 UNF; 15 mm [0.59 in] deep
D: 7/16 - UNF; 12 mm [0.47 in] deep

Weight and dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Length L_{max}</th>
<th>L_1 mm [in]</th>
<th>Weight kg [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML 8</td>
<td>102.5 [4.04]</td>
<td>4.1 [0.16]</td>
<td>1.0 [2.2]</td>
</tr>
<tr>
<td>OML 12.5</td>
<td>104.8 [4.13]</td>
<td>6.4 [0.25]</td>
<td>1.0 [2.2]</td>
</tr>
</tbody>
</table>
Dimensions, OML end port, US version

<table>
<thead>
<tr>
<th>Type</th>
<th>Length L_{max} [mm]</th>
<th>Length L_1 [mm [in]]</th>
<th>Weight [kg [lb]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML 20</td>
<td>108.6 [4.28]</td>
<td>10.2 [0.40]</td>
<td>1.1 [2.4]</td>
</tr>
<tr>
<td>OML 32</td>
<td>114.7 [4.53]</td>
<td>16.3 [0.64]</td>
<td>1.2 [2.6]</td>
</tr>
</tbody>
</table>
OMM
Technical Information OML and OMM Orbital Motors

Versions

OMM versions

<table>
<thead>
<tr>
<th>Mounting</th>
<th>Shaft</th>
<th>Port size</th>
<th>European version</th>
<th>US version</th>
<th>Side port version</th>
<th>End port version</th>
<th>Standard shaft seal</th>
<th>Drain connection</th>
<th>Check valve</th>
<th>Main type designation</th>
<th>Config. code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front; 3 x M6</td>
<td>Cyl. 16 mm</td>
<td>G 3/8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td>Yes</td>
<td>OMM</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G 3/8</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td>Yes</td>
<td>OMM</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front; 3 x 1/4 - 28 UNF</td>
<td>Cyl. 5/8 in</td>
<td>9/16-18 UNF</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td>Yes</td>
<td>OMM</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/16-18 UNF</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td>Yes</td>
<td>OMM</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front; 3 x M6</td>
<td>Splined B17x14</td>
<td>G 3/8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td>Yes</td>
<td>OMM</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G 3/8</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td>Yes</td>
<td>OMM</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Features available (options):
- Speed sensor
- Reverse rotation
- Corrosion protected
- Painted
- 2 bolt flange kit (Code no 151G0211)

Code numbers

<table>
<thead>
<tr>
<th>Config. code</th>
<th>Code numbers, displacement (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>0040</td>
</tr>
<tr>
<td>2</td>
<td>0041</td>
</tr>
<tr>
<td>3</td>
<td>0048</td>
</tr>
<tr>
<td>4</td>
<td>0049</td>
</tr>
<tr>
<td>5</td>
<td>0046</td>
</tr>
<tr>
<td>6</td>
<td>0047</td>
</tr>
</tbody>
</table>

Ordering

Add the four digit prefix “151G” to the four digit numbers from the chart for complete code number.

Example:
151G0035 for an OMM 20 with front mounting (3 x 1/4 - 28 UNF), cyl. 5/8 in shaft and port size 9/16 - 18 UNF.

Orders will not be accepted without the four digit prefix.
Technical data

Technical data for OMM with 16 mm and 5/8 in cylindrical shaft

<table>
<thead>
<tr>
<th>Type</th>
<th>OMM</th>
<th>OMM</th>
<th>OMM</th>
<th>OMM</th>
<th>OMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor size</td>
<td>8</td>
<td>12.5</td>
<td>20</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>Geometric displacement</td>
<td>cm³</td>
<td>[in³]</td>
<td>8.2</td>
<td>[0.50]</td>
<td>12.5</td>
</tr>
<tr>
<td>Max. speed</td>
<td>min⁻¹</td>
<td>cont.</td>
<td>1950</td>
<td>1550</td>
<td>1000</td>
</tr>
<tr>
<td>Max. output</td>
<td>kW</td>
<td>[hp]</td>
<td>1.8</td>
<td>[2.4]</td>
<td>2.4</td>
</tr>
<tr>
<td>Min. starting pressure with unloaded shaft</td>
<td>bar</td>
<td>[psi]</td>
<td>4</td>
<td>[60]</td>
<td>4</td>
</tr>
<tr>
<td>Min. speed</td>
<td>min⁻¹</td>
<td>[rpm]</td>
<td>50</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

1) Intermittent operation: the permissible values may occur for max. 10% of every minute.
2) Peak load: the permissible values may occur for max. 1% of every minute.
3) Operation by lower speeds may be slightly less smooth.
Shaft seal

Max. permissible shaft seal pressure

OMM with check valves and without use of drain connection:
The pressure on the shaft seal never exceeds the pressure in the return line.

OMM with check valves and drain connection:
The shaft seal pressure equals the pressure on the drain line.

Max. return pressure without drain line or max. pressure in drain line

Pressure drop in motor

The curve applies to an unloaded motor shaft and an oil viscosity of 35 mm²/s [165 SUS]
Oil flow

Direction of shaft rotation
Permissible shaft loads for OMM

The permissible radial shaft load (Prad.) is calculated from the distance (l) between the point of load and the mounting surface:

\[
P_{\text{rad}} = \frac{130400}{61.5 + l} \text{ N (l in mm; } l \leq 80 \text{ mm)}
\]

\[
P_{\text{rad}} = \frac{748}{2.54 + l} \text{ lbf (l in inch; } l \leq 3.15 \text{ in)}
\]

The drawing shows the permissible radial load when \(l = 20 \text{ mm} [0.79 \text{ in}].

The calculated shaft load should never exceed the permissible value.
Function diagrams

Explanation of function diagram use, basis and conditions can be found under Speed, torque and output.

- Light grey: Continuous range
- Light red: Intermittent range (max. 10% operation every minute)

Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found under Technical data.

Intermittent pressure drop and oil flow must not occur simultaneously.

OMM 8 function diagram

OMM 12.5 function diagram
Technical Information OML and OMM Orbital Motors

Function diagrams

OMM 20 function diagram

![OMM 20 function diagram](image)

OMM 32 function diagram

![OMM 32 function diagram](image)
Function diagrams
Shaft

Shaft version

A: Cylindrical shaft 16 mm [0.63 in]
D: Parallel key
AS • 5 • 16
DIN 6885

B: Cylindrical shaft
5/8 in
E: Parallel key
3/16 • 3/16 • 3/4 in
B.S. 46

C: Involute splined shaft
B17 • 14, DIN 5482
Measurement 19.641 ± 0.04 mm over 3 mm pins deviates from DIN 5482

Technical Information OML and OMM Orbital Motors
Port thread versions

A: G main ports

E: ISO 228/1 - G3/8

B: UNF main ports

F: 9/16 - 18 UNF O-ring boss port

C: G drain ports

G: ISO 228/1 - G1/8

D: UNF drain ports

H: 3/8 - 24 UNF O-ring port
Dimensions, OMM end port, European version

OMM end port, European version

C: M6; 10 mm [0.39 in] deep
D: G 3/8; 12 mm [0.47 in] deep
E: Drain connection G 1/8; 8 mm [0.39 in] deep
Weight and dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Length L max.</th>
<th>Length L1 mm [in]</th>
<th>Weight kg [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMM 8</td>
<td>104.0 [4.09]</td>
<td>3.5 [0.14]</td>
<td>1.9 [4.2]</td>
</tr>
<tr>
<td>OMM 12.5</td>
<td>106.0 [4.17]</td>
<td>5.5 [0.22]</td>
<td>2.0 [4.4]</td>
</tr>
<tr>
<td>OMM 20</td>
<td>109.0 [4.29]</td>
<td>8.5 [0.33]</td>
<td>2.1 [4.6]</td>
</tr>
<tr>
<td>OMM 32</td>
<td>114.0 [4.49]</td>
<td>13.5 [0.53]</td>
<td>2.2 [4.8]</td>
</tr>
<tr>
<td>OMM 40</td>
<td>118.0 [4.65]</td>
<td>17.0 [0.67]</td>
<td>2.3 [5.1]</td>
</tr>
<tr>
<td>OMM 50</td>
<td>122.0 [4.80]</td>
<td>21.5 [0.85]</td>
<td>2.4 [5.3]</td>
</tr>
</tbody>
</table>
Dimensions, OMM end port, US version

OMM end port, US version

C: 1/4 - 28 UNF - 2B; min. 10 mm [0.39 in] deep
D: 9/16 - 18 UNF; 12 mm [0.47 in] deep O-ring boss port
E: 3/8 - 24 UNF; 8 mm [0.39 in] deep O-ring port
Dimensions, OMM end port, US version

Weight and dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Length L max.</th>
<th>Length L1 mm [in]</th>
<th>Weight kg [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMM 8</td>
<td>104.0 [4.09]</td>
<td>3.5 [0.14]</td>
<td>1.9 [4.2]</td>
</tr>
<tr>
<td>OMM 12.5</td>
<td>106.0 [4.17]</td>
<td>5.5 [0.22]</td>
<td>2.0 [4.4]</td>
</tr>
<tr>
<td>OMM 20</td>
<td>109.0 [4.29]</td>
<td>8.5 [0.33]</td>
<td>2.1 [4.6]</td>
</tr>
<tr>
<td>OMM 32</td>
<td>114.0 [4.49]</td>
<td>13.5 [0.53]</td>
<td>2.2 [4.8]</td>
</tr>
<tr>
<td>OMM 50</td>
<td>122.0 [4.80]</td>
<td>21.5 [0.85]</td>
<td>2.4 [5.3]</td>
</tr>
</tbody>
</table>
Dimensions, OMM side port, European version

OMM side port, European version

C: M6; 10 mm [0.39 in] deep
D: G 38; 12 mm [0.47 in] deep
E: Drain connection G 1/8; 8 mm [0.39 in] deep
Dimensions, OMM side port, European version

Weight and dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Length L max. [mm]</th>
<th>Length L1 mm [in]</th>
<th>Weight kg [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMM 8</td>
<td>104.0 [4.09]</td>
<td>3.5 [0.14]</td>
<td>1.9 [4.2]</td>
</tr>
<tr>
<td>OMM 12.5</td>
<td>106.0 [4.17]</td>
<td>5.5 [0.22]</td>
<td>2.0 [4.4]</td>
</tr>
<tr>
<td>OMM 20</td>
<td>109.0 [4.29]</td>
<td>8.5 [0.33]</td>
<td>2.1 [4.6]</td>
</tr>
<tr>
<td>OMM 32</td>
<td>114.0 [4.49]</td>
<td>13.5 [0.53]</td>
<td>2.2 [4.8]</td>
</tr>
<tr>
<td>OMM 40</td>
<td>118.0 [4.65]</td>
<td>17.0 [0.67]</td>
<td>2.3 [5.1]</td>
</tr>
<tr>
<td>OMM 50</td>
<td>122.0 [4.80]</td>
<td>21.5 [0.85]</td>
<td>2.4 [5.3]</td>
</tr>
</tbody>
</table>
Dimensions, OMM side port, US version

OMM side port, US version

C: 1/4 - 28 UNF - 2B; min. 10 mm [0.39 in] deep
D: 9/16 - 18 UNF ; 12 mm [0.47 in] deep
E: 3/8 - 24 UNF ; 8 mm [0.39 in] deep
Dimensions, OMM side port, US version

Weight and dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Length L max.</th>
<th>Length L1 mm [in]</th>
<th>Weight kg [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMM 8</td>
<td>104.0 [4.09]</td>
<td>3.5 [0.14]</td>
<td>1.9 [4.2]</td>
</tr>
<tr>
<td>OMM 12.5</td>
<td>106.0 [4.17]</td>
<td>5.5 [0.22]</td>
<td>2.0 [4.4]</td>
</tr>
<tr>
<td>OMM 20</td>
<td>109.0 [4.29]</td>
<td>8.5 [0.33]</td>
<td>2.1 [4.6]</td>
</tr>
<tr>
<td>OMM 32</td>
<td>114.0 [4.49]</td>
<td>13.5 [0.53]</td>
<td>2.2 [4.8]</td>
</tr>
<tr>
<td>OMM 50</td>
<td>122.0 [4.80]</td>
<td>21.5 [0.85]</td>
<td>2.4 [5.3]</td>
</tr>
</tbody>
</table>
Accessories

2 bolt flange kit, code no. 151G0211
Hydraulic systems

Installation of the Danfoss Orbital Motors

About the design

• To ensure efficient operation all hydraulic components must be installed according to their individual instructions.
• The pump line must include a manometer connection.
• To ensure designed contact and minimise the tension all mounting flanges must be flat.

Hydraulic lines must be fitted correctly to prevent air entrappment.

About the assembly

• Follow the mounting instructions printed on the inside of the cardboard box.
• To prevent contamination, do not dismantle the plastic plugs from the connection ports until the fittings are ready to be assembled.
• Check that there is full face contact between the motor mounting flange and the mating part.
• Do not force the motor into place when tightening the mounting screws.
• Avoid unsuitable sealing material on fittings such as pack twine, teflon and others.
• Use only bonded seals, O-rings, steel washers and the like.
• When tightening the fittings never use a torque higher than the max. tightening torque stated in the instructions.
• Make sure that the cleanliness of the oil used is better than 20/16 (ISO 4406). Always use a filter for oil filling.

Starting up and running in the hydraulic system

• Through a small-meshed filter fill up the tank with oil to the upper oil level mark.
• Start the drive engine, and if possible, let it work at its lowest speed. If the motor is provided with bleed screws, keep these open until the emerging oil is non-foaming.
• Check that all components are correctly connected (pump following the right direction of rotation etc.).
• In load-sensing systems, also make sure that the signal lines are bled.
• Indications of air in the hydraulic system:
 – foam in the tank
 – jerky movements of motor and cylinder
 – noise
• If so required, refill with oil.
• Connect the system to a separate tank that includes a filter (fineness max. 10 µm) with twice the capacity of the max. oil flow. Let the entire system run without load (no pressure) for about 30 minutes.
• Do not load the system until it is all bled and clean.
• Check the tightness of the system and make sure that its performance is satisfactory.
• Change the oil filter, and if so required, refill with oil.

Operation

• Do not expose the motor to pressures, pressure drops and speeds above the max. values stated in the catalogue.
• Filter the oil to ensure that the contamination level 20/16 (ISO 4406) or better.
Hydraulic systems

Maintenance

- When working with hydraulic systems, the main criteria of operating safety and endurance is careful maintenance.
- Always renew and replace oil, oil filters and air filters according to the instructions given by the respective manufacturers.
- Regularly check the condition of the oil.
- Frequently check system tightness and oil level.
Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster.

Danfoss – Your Strongest Partner in Mobile Hydraulics.

Go to www.powersolutions.danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Danfoss.

We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Danfoss Power Solution representative nearest you.